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Summary:A practical method was developed forthegain of potentially biologically active 4-aryl-
5,8-epiminobenzo[7]annulenesusingtropinoneas starting material withanazabicyclo[3.2.1]octan 

skeleton.In an effort to improve product yield, reaction process conditions were optimized and the 
cascade Michael/cyclization reaction went most smoothly using tetrahydrofuran as solvent in the 

presence of DBU at 60°C for 10 hours. More diverse 4-aryl-5,8-epiminobenzo[7]annulenes were 
synthesized in good yields and structurally identified by NMR, FTIRand mass spectrometry 

analysis.The assembly of the heterocyclic core proceeds by a cascade Knoevenagel condensation, 
Michael addition and cyclocondensation sequence with a broad substrate applicability and good 

functional group tolerance. 
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Introduction 

 

The 5,8-epiminobenzo[7]annuleneskeletonis 

widely distributed in natural products aswellas 

synthetic compoundswith various valuablebiological 

activity, such as anticonvulsant[1-2], N-methyl-D-

aspartate (NMDA) antagonist [3-5], 

phenylethanolamineN-methyltransferase (PNMT) 

inhibitor [6], antitumor [7-8] and treatmentoftype 2 

diabetes[9].Simultaneously, the compound contains a 

5,8-epiminobenzo[7]annulene skeleton can be used 

as a raw material for the synthesis of other useful 

compounds [10-12].The medicinal relevance and 

other important applications of 5,8-

epiminobenzo[7]annulenederivatives haveattracted 

more and more attention among synthetic chemists, 

and a lot ofdifferent synthesis methods wereexplored 

and proposed for the gain of 5,8-

epiminobenzo[7]annuleneframeworks.In its 

characteristic molecular structure, a pyrrolidine ring 

was essentially contained.As an efficient way for the 

assemblyof pyrrolidine ring, 1,3-dipolar 

cycloaddition with azomethine ylidescan be 

employed for the design of 5,8-

epiminobenzo[7]annulenes, such as asymmetric 

[3+2]-dipolar cycloaddition [13-14], 

cycloisomerization/dipolar cycloaddition [15-16], 

dehydrogenative [3+2] cycloaddition [17] and 

intramolecular cross[3+2] cycloaddition [18]. In 

addition, a fewdifferentsynthesis strategies, 

includingradical translocation/cyclization [19], 

cyclization[20], intramolecular alkene 

carboamination [21], intramolecular ringclosure [22], 

tandem C-H amination [23], hydroamination [24], 

and formal carbenoidinsertion into the C−N bond in 

amide [25], have been developed for the construction 

of 5,8-epiminobenzo[7]annulene skeleton. Although 

rich and diverse synthetic strategies have been 

explored,it is stilla great challenge for the proposal of 

more novel methods with high efficiency and 

operability. 

 

Recently, tropinone has been taken as a 

structural core for the gain of various tropinone 

derivatives. Some of these compounds were obtained 

through the reaction of tropinone and aromatic 

aldehydes, such as 2,4-di((E)-arylidene)-8-

azabicyclo[3.2.1]octan-3-ones[26-28], 2-((E)-

arylidene)-8-azabicyclo[3.2.1]octan-3-ones [29-30], 

and 2-(hydroxy(aryl)methyl)-8-

azabicyclo[3.2.1]octan-3-ones [31-33].Moreover, 

these compoundscan be further converted to other 

heterocyclic compounds [34-36]. In addition, 2-(8-

azabicyclo[3.2.1]octan-3-ylidene)malononitriles can 

be synthesized by the reaction between tropinone 

analogs and malononitrile, and can be used as a raw 

material in many other reactions [37].However, there 

was few research about the direct synthesis of 4-aryl-

5,8-epiminobenzo[7]annulenes through one-pot 

reaction of tropinone, malononitrile and aldehydes. 

As a classical methodology, the Michael addition was 

a powerfultool for constructing new carbon–carbon 

bond playing a key role inmanymulticomponent 

reactions (MCR) especially in the construction of 

novel ring,which convertedatleast three different and 

easily accessible starting materials to the expected 
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productsin only one step with reduced consumption, 

increased output and simplified operation[38-40]. 

Therefore, we try hard to supplement a different and 

effectivemethodfor the preparation of a series of4-

aryl-5,8-epiminobenzo[7]annulenesby a tandem 

Michael addition−Cyclization reaction with 

acceptable results. 

 

Experimental 

 

All chemical reagents needed in the 

experiment were purchased from some reliable 

reagent companiesandusedas received.Thin layer 

chromatography (TLC) was used forthe analysis 

ofallreaction process, and column chromatography 

was applied to separate targetcompounds.The NMR 

spectra with the reported chemical shifts in ppm were 

applied forthe structure characterization ofall target 

compounds,and sample test was carried outon a 

Bruker AM400 NMR spectrometer 

utilizingtetramethylsilane (TMS) as the internal 

standard. The IR spectra of all products were 

determined by a ThermoFisher FTIR spectrometer. 

Negative ion TOF-MS data of all compounds 

wereacquiredfrom an Agilent mass spectrometer. 

 

General experiment process and operation 

steps for the one-potsynthesis of 4-aryl-5,8-

epiminobenzo[7]annulenes 4:Tropinone1 (0.3 mmol), 

malononitrile 2 (1.2 mmol), aromatic aldehydes3(0.3 

mmol) and DBU (0.6 mmol) were taken and added to 

dry glass tubes equipped with a stirring bar, and then 

3mLtetrahydrofuran was added to dissolve the 

reactants. All reaction tubes were placed in a 

constant-temperature oil bath,the reaction 

temperature was set at60°C, and the reaction 

solutionwas stirred for 10 hours. Subsequently, the 

desired product was isolated by column 

chromatography utilizing petroleum ether/ethyl 

acetate (1:1, v/v) as eluent. Finally, target product 

was concentratedmaking the use of a rotary 

evaporator and the residual organic solvent was 

removedbya vacuum drying oven. The spectral data 

of purecompoundsislistedas follows. 

 

Compound4a: Yellow solid; mp: 272-

273°C.1H NMR (CDCl3): δ =7.69-7.08 (m, 4H, Ar-

H), 5.10 (s, 2H, NH2), 3.59-3.57 (m, 1H), 3.53-3.50 

(m, 1H), 3.36-3.27 (m, 1H), 2.69-2.64 (m, 1H), 2.27 

(s, 3H, CH3), 2.18-2.09 (m, 2H, CH2), 1.74-1.57 (m, 

2H, CH2).IR (KBr): 3382, 3117, 2922, 2849, 2796, 

2213, 1566, 1490, 1449, 1296, 1266, 1254, 1236, 

1159, 1140, 1071, 1011, 826, 787, 754cm-1.MS-ESI: 

m/z 391.06 [M-H]-. 

Compound4b: Yellow solid; mp: 296-

298°C. 1H NMR (CDCl3): δ =7.16-7.10 (m, 4H, Ar-

H), 4.99 (s, 2H, NH2), 3.51-3.49 (m, 1H), 3.43-3.41 

(m, 1H), 3.26-3.20 (m, 1H), 2.60-2.55 (m, 1H), 2.18 

(s, 3H, CH3), 2.15-2.03 (m, 2H, CH2), 1.66-1.61 (m, 

2H, CH2). IR (KBr): 3387, 3238, 2923, 2849, 2797, 

2217, 1606, 1564, 1512, 1484, 1454, 1296, 1258, 

1231, 1158, 834, 787, 752cm-1.MS-ESI: m/z 331.14 

[M-H]-. 

 

Compound4c: Yellow solid; mp: 275-277°C. 
1H NMR (CDCl3): δ = 7.44-7.05 (m, 4H, Ar-H), 5.02 

(s, 2H, NH2), 3.49-3.48 (m, 1H), 3.43-3.40 (m, 1H), 

3.26-3.20 (m, 1H), 2.59-2.55 (m, 1H), 2.17 (s, 3H, 

CH3), 2.14-2.01 (m, 2H, CH2), 1.70-1.48 (m, 2H, 

CH2). IR (KBr): 3382, 3237, 3124, 2919, 2848, 2797, 

2214, 1567, 1494, 1451, 1296, 1255, 1237, 1159, 

1141, 1092, 1014, 829, 791, 756cm-1.MS-ESI: m/z 

347.11 [M-H]-. 

 

Compound4d: Pale yellow solid; mp: 278-

280°C. 1H NMR (CDCl3): δ = 7.47-7.07 (m, 4H, Ar-

H), 5.06 (s, 2H, NH2), 3.57-3.47 (m, 2H), 3.33-3.28 

(m, 1H), 2.67-2.61 (m, 1H), 2.25 (3H, CH3), 2.22-

2.07 (m, 2H, CH2), 1.73-1.63 (m, 2H, CH2). IR 

(KBr): 3387, 3312, 3122, 2924, 2849, 2794, 2211, 

1564, 1452, 1354, 1296, 1255, 1237, 1162, 1140, 

1079, 927, 887, 780, 751, 717cm-1.MS-ESI: m/z 

347.11 [M-H]-. 

 

Compound4e: Black solid; mp: 288-290°C. 
1H NMR (CDCl3): δ = 8.05-7.33 (m, 4H, Ar-H), 5.03 

(s, 2H, NH2), 3.45-3.37 (m, 2H), 3.28-3.22 (m, 1H), 

3.09 (s, 3H, CH3), 2.63-2.58 (m, 1H), 2.18 (s, 3H, 

CH3), 2.15-2.02 (m, 2H, CH2), 1.65-1.61 (m, 2H, 

CH2). IR (KBr): 3359, 3252, 3065, 2923, 2870, 2211, 

1568, 1493, 1450, 1400, 1303, 1150, 1087, 1062, 

960, 766, 545cm-1.MS-ESI: m/z 391.13 [M-H]-. 

 

Compound4f: Tawny solid; mp: 270-272°C. 
1H NMR (CDCl3): δ = 7.73-7.25 (m, 4H, Ar-H), 5.04 

(s, 2H, NH2), 3.44-3.42 (m, 2H), 3.28-3.22 (m, 1H), 

2.61-2.57 (m, 1H), 2.18 (s, 3H, CH3), 2.08-1.97 (m, 

2H, CH2), 1.66-1.61 (m, 2H, CH2). IR (KBr): 3342, 

3233, 3061, 2953, 2920, 2850, 2801, 2223, 1570, 

1467, 1406, 1331, 1287, 1270, 1167, 1124, 1106, 

1068, 1023, 864, 840cm-1.MS-ESI: m/z 381.14 [M-

H]-. 

 

Compound4g: Pale yellow solid; mp: 191-

193°C. 1H NMR (CDCl3): δ = 7.77-7.39 (m, 4H, Ar-

H), 5.09 (s, 2H, NH2), 3.52-3.46 (m, 2H), 3.35-3.29 

(m, 1H), 2.69-2.63 (m, 1H), 2.25 (3H, CH3), 2.20-

2.02 (m, 2H, CH2), 1.79-1.70 (m, 2H, CH2). IR 
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(KBr): 3373, 3226, 2925, 2853, 2216, 1571, 1449, 

1354, 1326, 1308, 1270, 1168, 1122, 1073, 809, 

703cm-1.MS-ESI: m/z 381.14 [M-H]-. 

Compound4h: Yellow solid; mp: 249-

250°C. 1H NMR (CDCl3): δ =7.84-7.32 (m, 4H, Ar-

H), 5.11 (s, 2H, NH2), 3.52-3.45 (m, 2H), 3.34-3.30 

(m, 1H), 2.68-2.64 (m, 1H), 2.25 (s, 3H, CH3), 2.22-

2.08 (m, 2H, CH2), 1.69-1.56 (m, 2H, CH2). IR 

(KBr): 3340, 3233, 2921, 2852, 2230, 1568, 1511, 

1455, 1351, 1287, 1263, 1167, 1136, 1107, 1071, 

868, 845cm-1.MS-ESI: m/z 338.15 [M-H]-. 

 

Compound4i: Yellow solid; mp: 297-298°C. 
1H NMR (CDCl3): δ =8.33-7.32 (m, 4H, Ar-H), 5.05 

(s, 2H, NH2), 3.45-3.39 (m, 2H), 3.28-3.23 (m, 1H), 

2.63-2.58 (m, 1H), 2.18 (s, 3H, CH3), 2.15-2.03 (m, 

2H, CH2), 1.64-1.57 (m, 2H, CH2). IR (KBr): 3352, 

3241, 2922, 2850, 2218, 1565, 1517, 1454, 1344, 

1264, 1104, 1016, 850, 733, 702cm-1.MS-ESI: m/z 

358.14 [M-H]-. 

 

Compound4j: Tawny fawn solid; mp: 261-

262°C. 1H NMR (CDCl3): δ =8.30-7.46 (m, 4H, Ar-

H), 5.07 (s, 2H, NH2), 3.45-3.38 (m, 2H), 3.28-3.23 

(m, 1H), 2.64-2.56 (m, 1H), 2.19 (3H, CH3), 2.12-

1.99 (m, 2H, CH2), 1.73-1.63 (m, 2H, CH2). IR 

(KBr): 3384, 3181, 2924, 2852, 2215, 1566, 1528, 

1452, 1350, 1296, 1258, 1233, 1163, 1140, 927, 860, 

795, 732, 702cm-1.MS-ESI: m/z 358.14 [M-H]-. 

 

Compound4k: Yellowish-brown solid; mp: 

250-251°C. 1H NMR (CDCl3): δ = 7.16-6.92 (m, 4H, 

Ar-H), 4.96 (s, 2H, NH2), 3.80 (s, 3H, OCH3), 3.59-

3.58 (m, 1H), 3.43-3.40 (m, 1H), 3.26-3.20 (m, 1H), 

2.59-2.54 (m, 1H), 2.18 (s, 3H, CH3), 2.15-2.05 (m, 

2H, CH2), 1.67-1.52 (m, 2H, CH2). IR (KBr): 3382, 

3136, 2921, 2849, 2214, 1610, 1565, 1516, 1450, 

1348, 1292, 1252, 1173, 1034, 831, 786cm-1.MS-ESI: 

m/z 342.90 [M-H]-. 

 

Compound4l: Yellowish-brown solid; mp: 

221-222°C. 1H NMR (CDCl3): δ = 7.01-6.69 (m, 3H, 

Ar-H), 5.06 (s, 2H, NH2), 3.95 (s, 3H, OCH3), 3.89 

(3H, OCH3), 3.70-3.67 (m, 1H), 3.52-3.49 (m, 1H), 

3.34-3.28 (m, 1H), 2.68-2.62 (m, 1H), 2.25 (3H, 

CH3), 2.22-2.12 (m, 2H, CH2), 1.82-1.59 (m, 2H, 

CH2). IR (KBr): 3388, 3150, 2918, 2848, 2213, 1604, 

1567, 1517, 1464, 1449, 1409, 1349, 1318, 1296, 

1258, 1235, 1136, 1022cm-1.MS-ESI: m/z 373.17 [M-

H]-. 

 

Compound4m: Tawny solid; mp: 242-

245°C. 1H NMR (CDCl3): δ = 7.36-7.09 (m, 4H, Ar-

H), 5.04 (s, 2H, NH2), 3.65-3.63 (m, 1H), 3.51-3.48 

(m, 1H), 3.33-3.28 (m, 1H), 3.01-2.94 (m, 1H, CH), 

2.66-2.61 (m, 1H), 2.25 (s, 3H, CH3), 2.22-2.04 (m, 

2H, CH2), 1.77-1.71 (m, 2H, CH2), 1.31 (d, 6H, 

2CH3). IR (KBr): 3397, 3314, 3182, 2967, 2922, 

2850, 2796, 2217, 1565, 1451, 1294, 1265, 1252, 

1236, 1160, 1138, 1053, 1021, 923, 834, 801, 764, 

719cm-1.MS-ESI: m/z 355.20 [M-H]-. 

 

Compound4n: Yellow solid; mp: 287-

289°C. 1H NMR (CDCl3): δ = 8.00-7.27 (m, 7H, Ar-

H), 5.09 (s, 2H, NH2), 3.65-3.62 (m, 1H), 3.51-3.48 

(m, 1H), 3.37-3.31 (m, 1H), 2.70-2.65 (m, 1H), 2.24 

(3H, CH3), 2.21-2.04 (m, 2H, CH2), 1.82-1.76 (m, 

2H, CH2). IR (KBr): 3398, 3189, 2922, 2849, 2797, 

2213, 1564, 1447, 1297, 1267, 1235, 1161, 1140, 

816, 800, 785, 750cm-1.MS-ESI: m/z 363.17 [M-H]-. 

 

Compound4o: Yellow solid; mp: 315-317°C. 
1H NMR (CDCl3): δ = 7.53-7.10 (m, 3H, Ar-H), 5.07 

(s, 2H, NH2), 3.80-3.78 (m, 1H), 3.51-3.48 (m, 1H), 

3.33-3.27 (m, 1H), 2.65-2.60 (m, 1H), 2.26 (s, 3H, 

CH3), 2.23-2.17 (m, 2H, CH2), 1.82-1.57 (m, 2H, 

CH2). IR (KBr): 3389, 3237, 3099, 2923, 2850, 2797, 

2216, 1564, 1454, 1297, 1258, 1237, 1161, 1144, 

1039, 842, 791, 712cm-1.MS-ESI: m/z 319.11 [M-H]-. 
 

Results and Discussion 
 

Initially, we explored the three-component 

reaction oftropinone1(0.3 mmol), malononitrile2(0.6 

mmol) and 4-bromobenzaldehyde 3a (0.3 mmol) in 

the presence of 2 equivDBUin toluene at 100°C for 

10 hours.The product 4a was isolated in 30% yield 

(Table-1, entry 1). Subsequently, other organic bases 

includingpyrrolidine, piperidine, morpholine, 

triethylamine, triethylenediamine and sodium 

methanolate,were used in model reaction to find 

outthe ideal organic base with the most extraordinary 

performance. To our disappointment, 

themodelreaction with other organic bases did not 

show better results in the perspective ofproductyield 

(Table-1, entries 2-7).Therefore, DBU was the most 

prominent organic base and used in the next 

optimization of process conditions. Then, the reaction 

solvent was replaced with other organic solvents 

including ethylene glycol, DMF, DMSO, 

tetrahydrofuran, acetonitrile and methanol, and the 

experimental results were shownin Table-1 (entries 

8–13). Experimental results indicated that product 

yieldhas been significantly improved when 

tetrahydrofuran was used as a solvent. Finally, we 

turned our attention to study the influences of 

different amounts of malononitrile, expecting that 

productyield may increase along with the addition of 
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more malononitrile(Table-1, entry 11 and entries 14–

16). When the amount of malononitrile was doubled, 

the reaction can proceed smoothly with highest yield. 

Through systematic screening, we have established a 

direct and effective means for the preparation of 4-

aryl-5,8-epiminobenzo[7]annulenederivative 4a in 

70% yield (Table-1, entry 15). 

 

Table-1: Optimization of process conditions. 

 
Entry Solvent Base Equiv. of malononitrile Temp (°C) Yield of 4aa (%) 

1 Toluene DBU 2 100 30 

2 Toluene Pyrrolidine 2 100 20 

3 Toluene Piperidine 2 100 27 

4 Toluene Morpholine 2 100 13 

5 Toluene Triethylamine 2 100 18 

6 Toluene Triethylenediamine 2 100 9 

7 MeOH Sodium methanolate 2 60 7 

8 Ethylene glycol DBU 2 100 15 

9 DMF DBU 2 100 14 

10 DMSO DBU 2 100 32 

11 Tetrahydrofuran DBU 2 60 49 

12 Acetonitrile DBU 2 60 28 

13 Methanol DBU 2 60 37 

14 Tetrahydrofuran DBU 3 60 62 

15 Tetrahydrofuran DBU 4 60 70 

16 Tetrahydrofuran DBU 5 60 70 

a Isolated yield after purification by silica gel column chromatography 
 

Table-2: Synthesis of 4-aryl-5,8-epiminobenzo[7]annulene derivatives. 

 
Entry R (3) Compound Yield (%)a 

1 4-BrC6H4 (3a) 4a 70 

2 4-FC6H4 (3b) 4b 34 

3 4-ClC6H4 (3c) 4c 44 

4 3-ClC6H4 (3d) 4d 63 

5 4-CH3SO2C6H4 (3e) 4e 30 

6 4-CF3C6H4 (3f) 4f 39 

7 3-CF3C6H4 (3g) 4g 51 

8 4-CNC6H4 (3h) 4h 44 

9 4-NO2C6H4 (3i) 4i 34 

10 3-NO2C6H4 (3j) 4j 36 

11 4-CH3OC6H4 (3k) 4k 42 

12 3,4-(CH3O)2C6H3 (3l) 4l 41 

13 4-iPrC6H4 (3m) 4m 70 

14 2-Naphthyl (3n) 4n 34 

15 2-Thienyl (3o) 4o 35 

a Isolated yield after purification by column chromatography. 
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Scheme-1:Reasonablemechanism for the tandem reactions. 
 

Withtheoptimum process conditions at 

hand,the exploration of substrate scope with regard to 

the above-mentioned reactionhas become the next 

most pressing matter(Table-2).Firstly, different 

aromatic aldehydes containing halogen substituent 

3a-dwere used for the reaction, and barely satisfying 

yields were obtained (Table-2, entries 1-4). Then, 

various aromatic aldehydes with an electron-

withdrawing group 3e-jwere selected as the substrate 

for this reaction, and the corresponding final products 

4e-jhave also been successfully synthesized(Table-

2,entries 5-10). Afterwards,thesubstituent group in 

aromatic aldehydes were replaced by diversified 

electron-donating groups as substrate (Table-2, 

entries 11-13), and the reactions proceeded well, 

affording the target products 4k−m with acceptable 

isolated yields (up to 70%). Furthermore, 2-

naphthaldehyde 3n, as a member of fused-ring 

compounds, was also transformed to the product 4n 

smoothly (Table-2, entry 14).To further extend the 

application of the model reaction, heterocyclic 

analogue 3o was employed in this procedure, and the 

desired targetproduct4o was separated successfully 

(Table-2, entry 15). 

 

A plausible mechanism for the one-pot 

reaction was outlined in Scheme-1. The reaction 

started from the Knoevenagel condensation of 

aromatic aldehydes and malononitrile,and the formed 

2-arylidenemalononitrile was then reacted with 

tropinone through a Michael addition 

reaction.Subsequently, the keto group in the 

intermediate product was nucleophilically attacked 

by another activated malononitrile. Finally, a new 

benzene ring was successfully constructed by 

successive domino reactions, including dehydration, 
intramolecular nucleophilic addition and 
cyclizationreaction. 

 

Conclusion 

 

On balance, we have exploreda candidate 

synthesis means for the preparation of potentially 

biologically active 4-aryl-5,8-

epiminobenzo[7]annulenesthroughone-

potMichael/cyclization reaction of tropinone, 

malononitrile and aromatic aldehydes.Under 

optimized reaction process conditions, various 4-aryl-

5,8-epiminobenzo[7]annulenes with different 

substituents were synthesized in good yield. The 

tandem domino reaction has 

broadindustrialapplication prospect in organic and 

medicinal chemistry due to its notable advantages, 

such as extensive substrate scope, high atomic 

utilization efficiency, diminished costs as well as 

simple and practical operation process. 
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